Melanin-covered nanoparticles for protection of bone marrow during radiation therapy of cancer.
نویسندگان
چکیده
PURPOSE Protection of bone marrow against radiotoxicity during radioimmunotherapy and in some cases external beam radiation therapy such as hemi-body irradiation would permit administration of significantly higher doses to tumors, resulting in increased efficacy and safety of treatment. Melanin, a naturally occurring pigment, possesses radioprotective properties. We hypothesized that melanin, which is insoluble, could be delivered to the bone marrow by intravenously administrated melanin-covered nanoparticles (MNs) because of the human body's "self-sieving" ability, protecting it against ionizing radiation. METHODS AND MATERIALS The synthesis of MNs was performed via enzymatic polymerization of 3,4-dihydroxyphenylalanine and/or 5-S-cysteinyl-3,4-dihydroxyphenylalanine on the surface of 20-nm plain silica nanoparticles. The biodistribution of radiolabeled MNs in mice was done at 3 and 24 h. Healthy CD-1 mice (Charles River Laboratories International, Inc., Wilmington, MA) or melanoma tumor-bearing nude mice were given MNs intravenously, 50 mg/kg of body weight, 3 h before either whole-body exposure to 125 cGy or treatment with 1 mCi of (188)Re-labeled 6D2 melanin-binding antibody. RESULTS Polymerization of melanin precursors on the surface of silica nanoparticles resulted in formation of a 15-nm-thick melanin layer as confirmed by light scattering, transmission electron microscopy, and immunofluorescence. The biodistribution after intravenous administration showed than MN uptake in bone marrow was 0.3% and 0.2% of injected dose per gram at 3 and 24 h, respectively, whereas pre-injection with pluronic acid increased the uptake to 6% and 3% of injected dose per gram, respectively. Systemic MN administration reduced hematologic toxicity in mice treated with external radiation or radioimmunotherapy, whereas no tumor protection by MNs was observed. CONCLUSIONS MNs or similar structures provide a novel approach to protection of bone marrow from ionizing radiation based on prevention of free radical formation by melanin.
منابع مشابه
Utility of F-18 FDG PET/CT for Detection of Bone Marrow Metastases in Prostate Cancer Patients Treated with Radium-223
A 76-year-old man with symptomatic bone metastases from castrationresistant prostate cancer underwent Radium-223-dichloride (Ra-223) therapy. Before Ra-223 therapy, he had normal peripheral blood cell counts. Ra-223 therapy relieved his shoulder and low back pain. The elevation of the serum prostate-specific antigen (PSA), doubling every month during Ra-223 therapy, suggested a PSA flare or rel...
متن کاملBone marrow radiation dosimetry of high dose 131I treatment in differentiated thyroid carcinoma patients
Background: Radiation absorbed dose to the red bone marrow, a critical organ in the therapy of thyroid carcinoma, is generally kept below 2 Gy for non-myeloablative therapies. The aim of this study was to calculate bone marrow radiation dose by using MIRDOSE3 package program and to optimize the safe limit of activity to be administered to the thyroid cancer patients. Materials and Methods: In t...
متن کاملEffects of Arbutin on Radiation-Induced Micronuclei in Mice Bone Marrow Cells and It's Definite Dose Reduction Factor
Background: Interactions of free radicals from ionizing radiation with DNA can induce DNA damage and lead to mutagenesis and carsinogenesis. With respect to radiation damage to human, it is important to protect humans from side effects induced by ionizing radiation.In the present study, the effects of arbutin were investigated by using the micronucleus test for anti-clastogenic activity, to cal...
متن کاملComparison of radiotherapy techniques to reduce hematologic toxicity in whole pelvic radiation therapy
Introduction: Concurrent chemoradiotherapy (CRT) is a standard treatment method for patients with carcinoma of cervix. Despite admirable therapeutic results, acute hematologic toxicity (HT) is common with this regimen. Many studies evaluate the relationship between the bone marrow dosimetric parameters and the severity of HT and result shown that the low dose of bone marrow wou...
متن کاملProtection Against Radiation-Induced Micronuclei in Rat Bone Marrow Erythrocytes by Curcumin and Selenium L-Methionine
Background: The search for potent radioprotective agents for the amelioration of radiation side effect is an important aim in radiobiology. The present study aimed to evaluate the effects of curcumin and seleno-L-methionine against radiation-induced micronucleus formation in rat bone marrow.Methods: In total, 40 male rats were divided into 8 groups (n=5 each), including control, curcumin or sel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of radiation oncology, biology, physics
دوره 78 5 شماره
صفحات -
تاریخ انتشار 2010